Activation of dihydrofolate reductase following thiol modification involves a conformational change at the active site.
نویسندگان
چکیده
Compared with the activation of dihydrofolate reductase (DHFR) by protein denaturants and inorganic salts, activation of the enzyme by thiol modification is relatively slow. Thus it is an ideal system for kinetic study of the activation mechanism. We describe here a kinetic study of the activation of DHFRs from chicken liver and Chinese hamster ovary by p-hydroxymercuribenzoate (p-HMB). The conformational changes in the enzyme molecule that result from the modification were monitored by measuring fluorescence enhancement due to the binding of 2-p-toluidinylnaphthalene-6-sulphonate (TNS), and by monitoring changes in the intrinsic fluorescence of the enzyme. Both activation and the conformational change probed by TNS followed pseudo-first-order kinetics, and the rate constants obtained are in good agreement with each other. The change in intrinsic fluorescence is a biphasic process. The rate of the fast phase, which may reflect a change in the microenvironment of Trp-24 at the active site, coincides with the rate of activation and the conformational change probed by TNS. The rate of the slow phase, which reflects a global conformational change, is about one order of magnitude lower than that of activation. The results indicate that the activation of DHFR by p-HMB is due to modification-induced conformational changes at its active site, rather than the modification of the thiol group itself, which is almost complete within the dead-time of the experiment. This study provides kinetic evidence for the proposal that flexibility at the active site is essential for full expression of catalytic activity.
منابع مشابه
Activation of chicken liver dihydrofolate reductase by urea and guanidine hydrochloride is accompanied by conformational change at the active site.
It has been reported that the activation of dihydrofolate reductase (DHFR) from L1210 mouse leukaemia cells by KCl or thiol modifiers is accompanied by increased digestibility by proteinases [Duffy, Beckman, Peterson, Vitols and Huennekens (1987) J. Biol. Chem. 262, 7028-7033], suggesting a loosening up of the general compact structure of the enzyme. In the present study, the peptide fragments ...
متن کاملThe Human Thioredoxin System: Modifications and Clinical Applications
The thioredoxin system, comprising thioredoxin (Trx), thioredoxin reductase (TrxR) and NADPH, is one of the major cellular antioxidant systems, implicated in a large and growing number of biological functions. Trx acts as an oxidoreductase via a highly conserved dithiol/disulfide motif located in the active site ( Trp-Cys-Gly-Pro- Cys-Lys-). Different factors are involved in the regulation of T...
متن کاملReplacement of threonine-55 with glycine decreases the reduction rate of OsTrx20 by glutathione
Thioredoxins (Trxs) are small ubiquitous oxidoreductase proteins with two redox-active Cys residues in a conserved active site (WCG/PPC) that regulate numerous target proteins via thiol/disulfide exchanges in the cells of prokaryotes and eukaryotes. The isoforms OsTrx23 with a typical active site (WCGPC) and OsTrx20 with an atypical active site (WCTPC) are two Trx h- type isoforms in rice that ...
متن کاملConformational selection and induced changes along the catalytic cycle of E. coli DHFR
Protein function often involves changes between different conformations. Central questions are how these conformational changes are coupled to the binding or catalytic processes during which they occur, and how they affect the catalytic rates of enzymes. An important model system is the enzyme dihydrofolate reductase (DHFR) from E. coli, which exhibits characteristic conformational changes of t...
متن کاملRefined crystal structures of Escherichia coli and chicken liver dihydrofolate reductase containing bound trimethoprim.
Refined crystal structures are reported for complexes of Escherichia coli and chicken dihydrofolate reductase containing the antibiotic trimethoprim (TMP). Structural comparison of these two complexes reveals major geometrical differences in TMP binding that may be important in understanding the stereo-chemical basis of this inhibitor's selectivity for bacterial dihydrofolate reductases. For TM...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 335 ( Pt 3) شماره
صفحات -
تاریخ انتشار 1998